Charoenkwan, P., Hwang, E., Cutler, R. W., Lee, H.-C., Ko, L.-W., Huang, H.-L., & Ho, S.-Y.


Phasit Charoenkwan1, Eric Hwang1,2,3, Robert W Cutler4, Hua-Chin Lee1,2, Li-Wei Ko1,2, Hui-Ling Huang1,2, Shinn-Ying Ho1,2.




High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analysing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analysing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable MatLab project at Few automatic methods focus on analysing multi-neuron images collected from HCS used in drug discovery. We provided an automatic HCS-based method for generating accurate classifiers to classify neurons based on their phenotypic changes upon drug treatments. The proposed HCS-neurons method is helpful in identifying and classifying chemical or biological molecules that alter the morphology of a group of neurons in HCS.


… “inverted microscope equipped with a CoolLED fluorescent light source (400 nm and 490 nm wavelength modules)”.

Product Associated Features

pE-100: A range of compact, simple-to-use, single wavelength illumination systems for screening fluorescence.

Product Type



BMC Bioinformatics

Year of Publication


Country of Publication